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Introduction 

In this lecture we will consider an overview of 
adaptive signal processing: 

– History 

– Architectures 

– Algorithms (we mainly consider the LMS 
algorithm) 

– Applications 
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History 

• Least squares - 19th Century mathematician 
Gauss. 

• Least Squares is widely used off-line in 
practically every branch of science, 
engineering and business. 

• Least mean squares first suggested for DSP in 
1960 by Bernard Widrow.  
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The discrete mathematics of adaptive filtering, is 
fundamentally based on the least squares minimization 
theory of the celebrated 19th Century German 
mathematician Gauss.  
Least squares is of course widely used in statistical 
analysis and virtually every branch of science and 
engineering.  
For DSP however the problem of least squares 
minimization is applied to real time data. This presents 
the challenge of producing a real time implementation to 
operate on data arriving at high data rates (from 1kHz to 
100MHz), and with loosely known statistics and 
properties. 
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Real Time DSP in the 1960’s 
 
The first suggestion of adaptive DSP algorithms was in Widrow and Hoff’s 
classic paper on the adaptive switching circuits and the least mean squares 
(LMS) algorithm in 1960 (IRE WESCON Conference). This paper stimulated 
great interest by providing a practical and potentially real time solution for 
least squares implementation. 
 
Widrow (at Stanford University) followed up this work with two definitive 
and classic papers in the 1970s:  
• B. Widrow et al. Adaptive Noise Cancellation: Principles and Applications. 

Proceedings of the IEEE, Vol. 63, pp. 1692-1716, 1975 
• B. Widrow et al. Stationary and Non-stationary learning characteristics of 

the LMS adaptive filter. Proc. IEEE, Vol 64, pp.1151-1162, 1976. 
And nowadays: 
B. Widrow and E. Walach. Adaptive Inverse Control. New Jersey: Prentice-Hall, 
Inc., 2008 
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Modern Perspective 

• Since the 1970’s there has been considerable research in adaptive 
signal processing algorithms and architectures. 

• The advent of powerful DSP processors in the early 1980s has 
allowed many real time adaptive DSP systems to be developed. 

• In the 1990s there has been a large growth in the application of 
real time adaptive DSP to solve many problems. 

• New algorithm research continues for techniques such as the QR 
adaptive algorithm, least squares lattice, and more recently for 
neural networks (a class of non-linear adaptive Systems ).  

• Nowadays the majority of key innovations in adaptive signal 
processing research can be found in the IEEE Trans on Signal 
Processing 

• FPGA 
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Theoretical prerequisites of 
Adaptive filters 
• Digital Signal Processing Fundamentals: Nyquist 

rate sampling, digital filters, Fourier transforms, 
analogue interfacing. 

• Statistical signal processing: Correlation; 
Ergodicity; Means, variances; Stationarity; Wide 
sense stationarity; Frequency response / Power 
Spectrum. 

• Matrix algebra: Addition, multiplication and 
matrix inverses; properties of the correlation/ 
covariance matrix; eigenvalues and eigenvectors; 
for QR matrix decomposition. 
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A Generic DSP System 
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Fixed digital filters 

One of the most common input/output DSP 
systems is a digital filter. 

Fixed digital filters can be designed with a wide 
variety of techniques. 

Most digital filter design software takes input of 
frequency response via “graphical” parameters. 
The user inputs desirable parameters to specify 
the acceptable tolerances from the ideal filter.  
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Fixed digital filters 



Digital Filters 

Infinite Impulse Response (IIR) filters which are 
linear filters with feedback.  

Finite Impulse Response (FIR) filter performs a 
linear combination: 

 

The difference equation for a simple 5 weight 
FIR filter is: 
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Signal flow graph of  5 
weight FIR filter  
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Response of a digital filter 

The frequency response of a digital filter is 
found by taking the discrete Fourier Transform 
(DFT) of the impulse response 
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Adaptive Digital Filters  

• Adaptive digital filters are self learning filters, 
whereby an FIR (or IIR) is designed based on 
the characteristics of input signals. No other 
frequency response information or 
specification information is available. 

• There are a large number of applications 
suitable for the implementation of adaptive 
digital filters. 
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Signal flow graph of  5 
weight Adaptive FIR filter 
An adaptive digital filter is often represented by a signal 
flow graph with adaptive nature of weights shown:  

 

 

 

 

 

An adaptive digital filter will therefore “adapt” to its 
environment. The environment will be defined by the 
input signals x(k) and d(k) to the adaptive digital filter. 
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General Closed Loop 
Adaptive filtering 
“The aim is to adapt the digital filter such that 
the input signal x(k) is filtered to produce y(k) 
which when subtracted from desired signal d(k), 
will minimize the power of the error signal e(k).” 
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Adaptive Algorithms 

The aim of the adaptive algorithm is to minimize 
the error signal power over a period of time. 

This can be approached in two ways: 

• Minimization of the mean squared error 
signal: 

 

• Minimization of the total sum of error 
squares: 
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Minimizing the Mean 
Squared Error 
If the statistics of  x(k) and d(k) are wide sense 
stationary and ergodic then we can choose to 
minimize the mean squared error signal:  
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The mean squared error (MSE) is in fact a 
measure of the signal power. Mean and mean 
squared value are assumed constant for wide 
sense stationary signals. 
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Adaptive Algorithm for FIR 
Filter 
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Mean Squared Error 

Consider a (trivial) one weight filter case. 

Consider the MSE equation defining the so called MSE 
performance surface. 

ζ = 𝐸 𝑒2 𝑘 = 𝐸 𝑑 𝑘 − 𝑤𝑥 𝑘
2

 

ζ = 𝐸 𝑑 𝑘
2

− 2𝑤𝐸 𝑑 𝑘 𝑥 𝑘 + 𝑤2𝐸 𝑥 𝑘
2

 

𝑅 = 𝐸 𝑥 𝑘
2

        𝑝 = 𝐸 𝑑 𝑘 𝑥 𝑘  

ζ = 𝐸 𝑑𝑘
2 − 2𝑝𝑤+ 𝑤2𝑟 
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Minimum Mean Squared 
Error Solution 
𝐸 𝑑𝑘

2  a constant, and w, r, and p are all scalars. Hence the 
performance surface is a parabola (upfacing). Plotting this 
performance surface gives: 
 
 
 
 
 
 
 
 
The minimum point is when the surface has gradient = 0 
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ζ = 𝐸 𝑑𝑘
2 − 2𝑝𝑤+ 𝑤2𝑟 



Minimum Mean Squared 
Error Solution 
If the filter has two weights the performance 
surface is a paraboloid in 3 dimensions: 
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Minimum Mean Squared 
Error Solution 
If the filter has more than three weights then we 
cannot draw the performance surface in three 
dimensions, however, mathematically there is 
only one minimum point which occurs when the 
gradient vector (with respect to w) is zero. A 
performance surface with more than three 
dimensions is often called a hyperparaboloid. 
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Solution for N weights 

When: 

 

Where: 

 

 

Consider the squared error: 
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Mean Squared Error 

Taking expected (or mean) values (and dropping 
“(k)” for notational convenience): 

 

Writing in terms of the correlation matrix, R and 
the cross correlation vector, p, gives: 
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Mean Squared Error 

Correlation Matrix: Assuming that x(k) and d(k) 
are wide sense stationary ergodic processes (i.e. 
mean and variance are constant) the correlation 
matrix for a 3 weight adaptive FIR filter 
example, R is: 
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The cross correlation vector, p, for a 3 weight 
adaptive filter: 
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Minimum Mean Squared 
Error Solution 
Consider the MSE equation defining the so 
called MSE performance surface,  

 

 

This equation is quadratic in the vector w. 
Hence there is only one minimum value of ζ, 
denoted MMSE (minimum mean square error) 
and which occurs at, wopt. 
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Minimum Mean Squared 
Error Solution 
The MMSE is found from setting the (partial 
derivative) gradient vector 𝛻, to zero: 

 

 

 

This solution is termed the Wiener-Hopf 
solution (and is the optimum solution for the 
mean squared error minimization). 
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The Wiener-Hopf Solution 

 
 
 
 
 
 
 
 
The Wiener-Hopf is NOT however a useful real time algorithm 
due to the heavy computation required, and if the statistics of 
x(k) and d(k) change then the wopt vector must be recalculated 
again. 
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Gradient Techniques 

An iterative equation to find the MMSE can be 
performed by “jumping” down the inside of the 
performance surface in the direction of steepest 

gradient -∇(k). 
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Step size 

The step size, μ, controls the speed of adaption and also the 
stability of the (feedback) algorithm. If μ is too large then the 
algorithm will climb the inside of the parabola and hence be 
unstable (diverge). For example in a one weight case: 
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The LMS Algorithm 

Widrow suggested that instead of calculating 
the derivative of the mean squared error, use 
instead, the instantaneous squared error, 

 

Calculating gradient estimate , gives: 
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The LMS Algorithm 

The LMS iterative weight update algorithm is: 
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The LMS Algorithm 
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The LMS Algorithm 

The FIR filter requires N MACs (multiply-
accumulates). 

The LMS update requires N MACs. 

2N MACs to implement each LMS algorithm 
iteration. Hence 2Nfs MACs per second (where fs 
is the application sampling frequency.) 
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LMS Stability 

The stability of the LMS is dependent on the 
magnitude of the step size parameter, μ. 
For convergence we require that: 
 
 
Where λmax is the largest eigenvalue of the R matrix. 
The previously derived bound is not convenient to 
calculate, and hence not particularly useful for 
practical purposes. However using the linear 
algebraic result that:  
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LMS Convergence - Small 
Step Size 
For a small step size, μA, the LMS algorithm will 
converge slowly, and with a small misadjustment 
error: 
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LMS Convergence - Large 
Step Size 
For a large step size, μB, the LMS algorithm will 
converge quickly, and with a large 
misadjustment error: 
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Application Examples 

System Identification: 

 

 

Inverse System Identification: 

 

 

Noise Cancellation: 
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Mains Hum Noise Suppression 

Using a 50 Hz noise reference, electrical mains hum can be 
removed from the ECG (electrocardiograph, heartbeat signal). 
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The ECG main’s hum noise canceller is a classic example first presented by 
Widrow et al. and frequently quoted in many texts and papers for example 
purposes. 
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