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In this lecture we will consider an overview of
adaptive sighal processing:

— History

— Architectures

— Algorithms (we mainly consider the LMS
algorithm)

— Applications
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e Least squares - 19th Century mathematician
Gauss.

* Least Squares is widely used off-line in
practically every branch of science,
engineering and business.

* Least mean squares first suggested for DSP in
1960 by Bernard Widrow.
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The discrete mathematics of adaptive filtering, is
fundamentally based on the least squares minimization
theory of the celebrated 19th Century German
mathematician Gauss.

Least squares is of course widely used in statistical
analysis and virtually every branch of science and
engineering.

For DSP however the problem of least squares
minimization is applied to real time data. This presents
the challenge of producing a real time implementation to
operate on data arriving at high data rates (from 1kHz to
100MHz), and with loosely known statistics and
properties.
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The first suggestion of adaptive DSP algorithms was in Widrow and Hoff’s
classic paper on the adaptive switching circuits and the least mean squares
(LMS) algorithm in 1960 (IRE WESCON Conference). This paper stimulated
great interest by providing a practical and potentially real time solution for
least squares implementation.

Widrow (at Stanford University) followed up this work with two definitive
and classic papers in the 1970s:

 B. Widrow et al. Adaptive Noise Cancellation: Principles and Applications.
Proceedings of the IEEE, Vol. 63, pp. 1692-1716, 1975

 B. Widrow et al. Stationary and Non-stationary learning characteristics of
the LMS adaptive filter. Proc. IEEE, Vol 64, pp.1151-1162, 1976.

And nowadays:

B. Widrow and E. Walach. Adaptive Inverse Control. New Jersey: Prentice-Hall,
Inc., 2008

European Union
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* Since the 1970’s there has been considerable research in adaptive
signal processing algorithms and architectures.

* The advent of powerful DSP processors in the early 1980s has
allowed many real time adaptive DSP systems to be developed.

* In the 1990s there has been a large growth in the application of
real time adaptive DSP to solve many problems.

* New algorithm research continues for techniques such as the QR
adaptive algorithm, least squares lattice, and more recently for
neural networks (a class of non-linear adaptive Systems ).

* Nowadays the majority of key innovations in adaptive signal
processing research can be found in the IEEE Trans on Signal
Processing

* FPGA
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* Digital Sighal Processing Fundamentals: Nyquist
rate sampling, digital filters, Fourier transformes,
analogue interfacing.

 Statistical signal processing: Correlation;
Ergodicity; Means, variances; Stationarity; Wide
sense stationarity; Frequency response / Power
Spectrum.

* Matrix algebra: Addition, multiplication and
matrix inverses; properties of the correlation/
covariance matrix; eigenvalues and eigenvectors;
for QR matrix decomposition.
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A Generic DSP System
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One of the most common input/output DSP
systems is a digital filter.

Fixed digital filters can be designed with a wide
variety of techniques.

Most digital filter design software takes input of
frequency response via “graphical” parameters.
The user inputs desirable parameters to specify
the acceptable tolerances from the ideal filter.
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Transition
Passband Band Stopband
H(H) A .'-‘H P
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Ripple (dB) Actual Low Pass Fllter
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Ideal Low Pass Filter fo/2
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nfinite Impulse Response (lIR) filters which are
inear filters with feedback.

~inite Impulse Response (FIR) filter performs a

inear combination: N-1
Y = Z w,Xx(k—n)
n=20
The difference equation for a simple 5 weight
FIR filter is:

y(k) = x(k)wg+ x(k—1)w, +x(k—=2)w, + X(k—3)wz+ xX(k—4)w,
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Signal flow graph of 5 A}
weight FIR filter .

y(k) = x(K)wg+x(k—=1)w,; + x(k—2)w, + X(k—3)ws + Xx(k—4)w,

delay —«  y(k-1) x(k-2) X(k-3) _ x(k-4)

Input  x(k) ' > /\ - /\ “pN A
»——— Filter weight
X) Wy Wy W3 Wy (constant multiplier)
T > y(k) Output
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The frequency response of a digital filter is
found by taking the discrete Fourier Transform

(DFT) of the impulse response

yka Y(h) A
|t DFT
P . -
¢ ¢ ime f— TTEC-]UEHC‘)"
IDFT
Filter Impulse Response Filter Frequency Response
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* Adaptive digital filters are self learning filters,
whereby an FIR (or lIR) is designed based on
the characteristics of input signals. No other
frequency response information or
specification information is available.

* There are a large number of applications
suitable for the implementation of adaptive
digital filters.
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weight Adaptive FIR filter it

An adaptive digital filter is often represented by a signal
flow graph with adaptive nature of weights shown:

delay —«  y(k-1) x(k-2) X(k-3) _ X(k-4)  __ Adaptive weights

x(k) 1 PATA?A > N\ '/
SR Pl s s et

); K) - L‘F K
i \% o Ay e LI et

Output ~— Error

An adaptive digital filter will therefore “adapt” to its
environment. The environment will be defined by the
input signals x(k) and d(k) to the adaptive digital filter.
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“The aim is to adapt the digital filter such that
the input signal x(k) is filtered to produce y(k)
which when subtracted from desired signal d(k),
will minimize the power of the error signal e(k).”

desired

signal ‘j(k)
input / +
signal Adaptive FIR y(K) 5 e(k)
X(k) Digital Filter Output error
// signal signal
Adaptive Algorithm _

e(k) = d(k) - y(k)
y(k) = Filter(x(k))
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Adaptive Algorithms

The aim of the adaptive algorithm is to minimize
the error signal power over a period of time.

This can be approached in two ways:

* Minimization of the mean squared error

signal: M -1

B 1
E(e?(k)] = VoW, ZM e?(k) forlarge (M,—M,)
n= My

e Minimization of the total sum of error

k
squares: ,
V), = Z e<(s)

s=0 '
The project is co-financed by the
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Minimizing the Mean A\ YAY;
Squared Error P e e

If the statistics of x(k) and d(k) are wide sense
stationary and ergodic then we can choose to
minimize the mean squared error signal:

desired
signal | d(k)
input / K +
signal Adaptive FIR y(k) 5 e(k)
X(k) Dlgltal Filter Output = error
/ signal signal
Adaptive Algorithm _

e(k) =d(k) - y(k)
y(k) = Filter(x(k))
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desired Hungary-Serbia
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input
sgnal  AdaptiveFIR Y% 5 __eg_{)
x(k) Digital Filter  output ~ error
signal signal
/
Adaptive Algorithm _
e(k) = d(k) - y(k)
y(k) = Filter(x(k))
M-1
1
MSE = E[e?(k)] = — 3 e2(n), forlarge M
M
n=20

Good neighbours
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The mean squared error (MSE) is in fact a
measure of the signal power. Mean and mean

squared value are assumed constant for wide
sense stationary signals.

e(k) 4
TR AT IR TR
? l l l l : °! ‘\ & *L M- sample
™ Mean Value=0
e?(k) ___—— Mean Squared Value
teoele TPetoese — oateagaes >

M -1 sa_mpjlev- i 2 ms
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x(k)
. d(k)
P —

Y+ lewk

y(k)
.@H

=  Adaptive Filter Weight Optimisation - Find wot =

N -1
y(k) = > w,x(k—n) = wix(k)
n=>~0

e(k) = d(k)—y(k) Wopt = function of(x(k), d(k))
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Consider a (trivial) one weight filter case.

Consider the MSE equation defining the so called MSE
performance surface.

¢ = E[e?(k)] = E | (d(k) — wx(k))’|
(= E|(d()"| - 2wE[d(k)x(k)]+ wE | (x(k)) |
R=E|(x()°| p=Eld)x)]
(= E|di| — 2pw+ w?r

Sl The project is co-financed by the
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E|dZ| a constant, and w, r, and p are all scalars. Hence the

k [ ] L] [ ] L[]
performance surface is a parabola (upfacing). Plotting this
performance surface gives:

MSE, ¢ A
{ = E|dg]| — 2pw+ w?r
V] = —— :
: e
Wopt w
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If the filter has two weights the performance
surface is a paraboloid in 3 dimensions:

MSE, ¢
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If the filter has more than three weights then we
cannot draw the performance surface in three
dimensions, however, mathematically there is
only one minimum point which occurs when the
gradient vector (with respect to w) is zero. A
performance surface with more than three
dimensions is often called a hyperparaboloid.

The project is co-financed by the
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Solution for N weights

When: N -1
y(K) = 3 wpx(k—n) = wix(k) e(k) = d(k)-y(k)
n=>~0
Where:
w=lwyg wy wy ... Wy_o Wy_q17
x(k) = [x(k) x(k—1) x(k—2) ... x(k—-N+2) xtk—N+1)]T

Consider the squared error:
e2(k) = (d(k)-w'x(k))?

= d?2(k)+ wl[x(k)xT(k)Ilw-2d(k)wTx(k)

The project is co-financed by the "~ creating
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Taking expected (or mean) values (and dropping
“(k)” for notational convenience):

E(e?(k)] = E[d?]+wTE[xxT]w-2wTE[dx]

Writing in terms of the correlation matrix, R and
the cross correlation vector, p, gives:

E[e2(k)] = E[d?2(k)]+ wTRw-2wTp
R = E[xxT] p = Eld,x,]

The project is co-financed by the
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Correlation Matrix: Assuming that x(k) and d(k)
are wide sense stationary ergodic processes (i.e.
mean and variance are constant) the correlation
matrix for a 3 weight adaptive FIR filter

exar Xk
_ T =
R = E[xx'] = E\x, [xk X 1 Xk—ZJ

k-2 R X (X o)

=Bl xR (g qx o)

(Xje_2X)) (X _pXp 1) (XE_)

The project is co-financed by the
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The cross correlation vector, p, for a 3 weight

adaptive filter:

The project is co-financed by the
European Union
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Consider the MSE equation defining the so
called MSE performance surface,
¢ = Ele?(k)]:
E[e?(k)] = E[d?(kK)]+ W Rw-2w'p
This equation is quadratic in the vector w.
Hence there is only one minimum value of

denoted MMSE (minimum mean square error)
and which occurs at, w,;,

The project is co-financed by the
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The MMSE is found from setting the (partial
derivative) gradient vector V, to zero:

_dg _ _
52 = 2Rw-2p =0

_ p-1
= Wyt = R 'p

This solution is termed the Wiener-Hopf
solution (and is the optimum solution for the
mean squared error minimization).

The project is co-financed by the | ‘
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input
signal Adaptive FIR  Y(K) e(k)
t—>  Digital Filter o :@—>
put
K / sgnal ¥+ S
Calculate desired
w=Rp = ?d(Kk) signal

The Wiener-Hopf is NOT however a useful real time algorithm
due to the heavy computation required, and if the statistics of

x(k) and d(k) change then the w,;,, vector must be recalculated
again.
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An iterative equation to find the MMSE can be
performed by “jumping” down the inside of the
performance surface in the direction of steepest

. k+1) = k) +u(-V(k
gradient -V(k). Wit T TR
MSE, { | <=

Large step size, u =<1

The project is co-financed by the |
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The step size, U, controls the speed of adaption and also the
stability of the (feedback) algorithm. If pis too large then the

algorithm will climb the inside of the parabola and hence be
unstable (diverge). For example in a one weight case:

I
MSE,
>\
\
Step size Step size
OK,
algorithm «— t0|0 |§[ﬁe,
converges gisz:;e;n
MMSE:
>
w
Wopt
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Widrow suggested that instead of calculating
the derivative of the mean squared error, use

instead, the instantaneous squared error,
e?(k) = (d(k)—w'x(k))?

Calculating gradient estimate, gives:

- 0 o 0 _
V(k) = S e?(k) 2e(k)(aw(k)e(k)j 2e(K)x(K)
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The LMS iterative weight update algorithm is:

wik+1) = wik) + (- aj( k){e2(k)))

w(k+1) = w(k) +2ue(k)x(k)

The project is co-financed by the fcrea
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d(k
x(})] 1A A 0
Wo W4 _
y(k e(k)
H—t) - i%»
> w(k+1) = w(k)+2ue(k)x(k) PU—
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The FIR filter requires N MACs (multiply-
accumulates).

The LMS update requires N MACs.

2N MACs to implement each LMS algorithm
iteration. Hence 2Nf, MACs per second (where f,
is the application sampling frequency.)

The project is co-financed by the
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The stability of the LMS is dependent on the
magnitude of the step size parameter, L.

For convergence we require that:

0<u<7L

max

Where A, is the largest eigenvalue of the R matrix.

The previously derived bound is not convenient to
calculate, and hence not particularly useful for
practical purposes. However using the linear
algebraic result that: N-1

trace[ R] Z A

The project is co-financed by the
. common future
European Union
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For a small step size, p,, the LMS algorithm will
converge slowly, and with a small misadjustment

error. €k ‘ M Filter has adapted

'| W after time t

=P = — —

A H .
| _ A0 T

MSE = p,N<Signal Power>, for k>1
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For a large step size, W, the LMS algorithm will
converge quickly, and with a large

misadjustment error:

e A

— — —_ — - = = — —

Filter has adapted after time t

The project is co-financed by the
European Union
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Unknown

System ldentification: [~ system

/ d(k)

__ X Adaptive (¥ ;J}fﬂ

Filter
/

Inverse System Identification:

Delay
/ d(k)l
Unknown _x(0 - Adaptive %) etk
sty . System Filter 2

/

Noise Cancellation:
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Using a 50 Hz noise reference, electrical mains hum can be
removed from the ECG (electrocardiograph, heartbeat signal).
I

1
l.l | 'i-l." “-!.:lp "l":l‘-':I
I I'I'I:'-.u.lIrIII ||::

: ADC
time

Signal + Noise d(k)

/

I=I|-|i:ll|l_| E ]
N ]

. | B
|III||| l;||| I||I||II|II|||| IE“ ||II||I | Adaptlve 4,@_%1]_-,
I||||||||I '.I I| || ||||||||I|i i || I| — Fl|tel' y(k) -
x(k) ! |
—Ftime / l!' ;' |/
Noise Reference o el ]
e
_ time
Signal
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The ECG main’s hum noise canceller is a classic example first presented by
Widrow et al. and frequently quoted in many texts and papers for example
purposes.

n Baby’'s + Mother's heartbeat
P — - ADC

/ d(k)
W‘“ atve | YOI e
#|ADC 1/ Filter 4“@_ >

x(K) / ; Baby's heartbeat

-
)
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